
Introduction

All STMicroelectronics microcontrollers embed an ADC (analog-to-digital converter) with a given resolution (number of bits) and 
sampling rate.
For most applications, this resolution is sufficient, but in some cases where a higher accuracy is required, oversampling, and 
decimating the input signal can be implemented to avoid the use of an external ADC solution and the associated increase in 
application power consumption.
This application note presents the oversampling principle, then describes hardware and software oversampling implementation 
using a specific unit that is available on certain STM32 MCUs. It then compares the two possibilities in terms of power 
consumption.
For the software implementation, two ADC resolution improvement methods are described. These are based on oversampling 
the input signal with the maximum sampling rate of the ADC used, and decimating the input signal to enhance its resolution. 
The embedded software (STSW-STM32014 or X-CUBE-ADC_OVSP) delivered with this application note gives implementation 
examples for these two methods, and applies them to both medium- and high-density STM32F1 series products, as well as all 
STM32F3 series and STM32Lx series products.
For the hardware implementation, an overview of the on-chip hardware analog-to-digital converter (ADC) oversampling engine 
is provided. It is integrated in the STM32 products listed in Table 1.
The main user benefit of hardware oversampling is increased SNR (signal-to-noise ratio) with less CPU interaction, resulting in 
overall lower power consumption compared with the software-based implementation.
Formulas are provided to determine the oversampling ratio or the hardware oversampling unit configuration to use according to 
the desired resolution improvement. These theoretical formulas are compared to practical use cases.

Table 1. Applicable products

Type Series

Microcontrollers
STM32U5 series, STM32U0 series, STM32H7 series, STM32H5 series, STM32F7 series, STM32F4 series, 
STM32F2 series, STM32F0 series, STM32L1 series, STM32F3 series, STM32F1 series, STM32L4+ series, 
STM32L4 series, STM32L0 series, STM32L5 series, STM32G4 series, STM32G0 series, STM32WB series
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比较特定硬件单元和软件实现过采样的功耗
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两种软件实现提高ADC分辨率的方法，基于使用ADC的虽大采样率对输入信号进行过采样并对采样信号抽取以提高分辨率
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硬件过采样是使用硬件ADC过采样引擎实现的
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硬件过采样增加了信噪比，减少CPU交互，与基于软件实现情况相比，功耗更低
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打字机
根据期望的分辨率改进“ 过采样比”或硬件过采样单元配置的公式，将醴陵市与实际示例比较



1 General information

This document applies to STM32 Arm®-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
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2 Oversampling as a way to improve the quality of signal acquisition

2.1 Quantization of noise and signal-to-noise ratio
Analog-to-digital converters (ADCs) transform analog signals into an array of digital codes. It is carried out by 
performing amplitude quantization of the analog input signal. The quantization resolution depends on the binary 
output word length, normally in the range of 6 to 18 bits. The error between the input signal and the quantized 
signal is called the quantization error.
The maximum error for an ideal converter when digitizing a signal is ±½ LSB (least significant bit), as shown in 
the transfer function (left side of Figure 1).
The LSB is also often called a quantum (q). Assuming that the user has an N-bit analog-to-digital converter (ADC) 
and a voltage reference, VAREF, the quantum, q, is the minimum distance between two adjacent ADC codes. 
Moreover, it is defined as follows: q = VAREF2N (1)

where: q /2a < t < + q/2a
with -q / 2a < t < +q / 2a
The quantization error e(t) as a function of time is shown in the right side of Figure 1.
This is approximated by a sawtooth signal, as it is considered that an uncorrelated sawtooth waveform is a good 
representation of the quantization error for any AC signal, and that it behaves like wideband noise.

Figure 1. Ideal N-bit ADC quantization
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The quantization error e(t) is defined as:e t = a × t witℎ − q/2a < t < + q/2a (2)

Hence, the RMS value of e(t) is:
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过采样是一种提高信号采集质量的方法
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e t 2 = aq ⋅ q/ 2a− q / 2a e t 2 ⅆt = q12 (3)

The SNR (signal-to-noise ratio) is the ratio of the ADC noise to the input signal power. For an ideal ADC, it is 
assumed that the SNR is equal to the ratio of the quantization noise to the input signal. No other noise source is 
considered.
For a full-scale input sine wave this is expressed as follows:s t = q × 2 N − 1 × sin 2πft (4)

Using equations (3) and (4), the SNR of an ideal N-bit converter (ADC resolution) is calculated as follows:SNR = 6.02 × N + 1.76 dB (5)

It is important to note that the RMS quantization noise is measured over the full Nyquist bandwidth (from DC up to 
Fs/2).
It can be seen that when the SNR increases, the ADC effective number of bits (N in the equation 5) increases.
Note also that for a real ADC, different error sources must be considered: offset, gain - INL (integral nonlinear) 
and DNL (differential nonlinear). A brief description of these errors can be found in the STM32 MCU datasheets. 
These errors degrade the ideal ADC resolution and determine the real effective number of bits of the ADC 
(ENOB). Improving the SNR enhances the effective number of bits of the ADC. The following section 
demonstrates that sampling the input signal rates higher than the Nyquist frequency improves the SNR. The 
Nyquist frequency is discussed in the next paragraph.

2.2 Nyquist theorem and antialiasing low-pass filter relaxation
The Nyquist theorem states that to reconstruct the analog input signal, the signal must be sampled at a rate Fs 
(sampling frequency) that is greater than twice the maximum frequency component of the input signal.
Noncompliance with the Nyquist theorem causes aliasing effects and the analog signal cannot be fully 
reconstructed from the input samples.
Therefore, for most applications, a low-pass filter is required at the ADC input to filter frequencies lower than half 
of the sampling frequency. It is difficult to handle the filter constraints with low sampling frequencies. The 
oversampling consists of sampling the analog input signal at higher rates than the Nyquist frequency limit, filtering 
the samples, and reducing the sample rate by decimation. Using this method relaxes the antialiasing low-pass 
filter constraints.

2.3 Processing gain achievable with oversampling
In most cases, we can consider that the quantization noise is uncorrelated with respect to the input signal. In this 
condition, the quantization noise is approximately Gaussian and spreads more or less uniformly over the Nyquist 
bandwidth (see Figure 2).

Figure 2. Quantization noise spectrum
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However, under certain conditions where the sampling clock and the signal are harmonically correlated, the 
quantization noise becomes correlated. In addition, its energy is concentrated in the harmonics of the signal. In 
conditions where the quantization noise does not appear as random noise, dithering must be applied (see 
Section 2.4  Dithering).
In many applications, the useful signal occupies a bandwidth (BW) smaller than Fs/2.
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SNR(信噪比)是ADC噪声与输入信号功率的比值对于理想的ADC，假设信噪比等于量化噪声与输入信号的比值，不考虑其它的噪声源
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在大多数情况下，认为量化噪声相对于输入信号是不相关的。在这种情况下近似为高斯噪声，并且在奈奎斯特带宽上或多或少的均匀扩散
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If digital filters are used to remove the noise outside the BW (this filter can be more precise than the antialiasing 
ones mentioned before), the total RMS noise is reduced (Figure 3); the RMS value of the quantization noise is 
divided by a ratio that depends on the useful bandwidth (BW) with respect to the sampling rate (Fs).

Figure 3. Quantization noise gain
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We can then reformulate the previous SNR expression taking into account this processing gain, by filtering the 
out-off band noise: SNR = 6.02 × N × + 1.76 dB + 10xLog10OSR (6)

This expression is valid over a bandwidth, BW, with an oversampling ratio given by:OSR = FS/ 2 × BW (7)

2.4 Dithering
The technique presented above works well for a white quantization noise.
However, if the sampling clock and the signal are harmonically correlated (in this case the quantization noise 
becomes correlated as well), or when the input signal amplitude is smaller than q/2, the processing gain does not 
work properly.
This is because for the first case the quantization noise is no longer random, and for the second case there are (in 
theory) no code transitions when the signal is smaller than the quantization step.
One way to solve these issues is to use the dithering technique, where a small Gaussian noise is added to the 
input signal (see the left side of Figure 4), to obtain a signal (see the right part of the figure) that can ensure LSB 
toggling.
Dithering also ensures that the quantization noise is always random, independently from the input signal.

Figure 4. Dithering technique
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The impact of SNR can be much reduced if the noise is shaped; for example if the dithering noise is filtered in the 
wanted bandwidth, and is only present outside of that bandwidth.
The embedded DAC can be used for generating the dithering signal. Also, in Section 3.2  Oversampling using 
triangular dither, we generate the dithering signal by means of a timer configured in PWM mode, and some 
additional electronic components.
If the application does not require the capture of signals smaller than the quantization step, and if the quantization 
error can be considered as wideband noise, the dithering technique can be omitted.
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如果对噪声进行塑造，信噪比的影响就可以大大降低，例如：使得抖动噪声在带宽内过滤，仅在带宽外存在

CHENGZHI
打字机
可以使用DAC产生抖动信号，或者通过配置PWM模式下的定时器和其他电子元件产生抖动信号

CHENGZHI
打字机
如果应用程序不需要捕获小于量化补偿的信号，并且量化误差可以视为带宽噪声，则可以省略抖动技术。



3 Software oversampling

This section presents two software-oversampling implementation methods. Each has advantages and 
disadvantages, which are compared.
The embedded software delivered with this application note is available in the STSW-STM32014 (or X-CUBE-
ADC_OVSP) package.

3.1 Oversampling using white noise

3.1.1 Oversampled signal SNR with white input noise
Equation 6 in Section 2.3) gives the SNR obtained when oversampling the input signal with a sample rate OSR 
times faster than the Nyquist frequency, and low-pass filtering the signal band:SNR = 6.02 × N × + 1.76 dB + 10xLog10OSR
This shows that each doubling of the sampling frequency reduces the in-band noise by 3 dB, and increases the 
measurement resolution by 0.5 bit. Therefore, a 6 dB SNR gain is required to add 1 resolution bit to the ADC. In 
general, if p additional bits are required by the application, the ADC sampling frequency should be at least:FOVS = 4p × Fs (8)

Where Fs is the ADC sampling frequency used.

3.1.2 Decimation
Averaging means adding m samples and dividing the result by m. Averaging several data from an ADC 
measurement is equivalent to a low-pass filter, which attenuates the signal fluctuation and noise. Averaging is 
therefore often used to smooth and remove spikes from the input signal.

Note: Normal averaging does not increase the resolution of the conversion because the sum of m N-bit samples 
divided by m is an N-bit representation of the sample.
Decimation is an averaging method. When combined with oversampling, decimation improves the ADC 
resolution.
In fact, adding 4p (4 power of p) ADC N-bit samples, gives a representation of the signal on N+2p bits. To have p 
additional effective bits, the sum is shifted to the right by p bits.
This FIR filter with equal filter coefficients enables the user to filter the oversampling frequency by giving an output 
sample computed from the OSR input samples.
The oversampling method limits the maximum input frequency bandwidth. In the case of the STM32F1 series, 
STM32F3 series and STM32Lx series (with maximum sampling rate around 1 Msps), signals having components 
up to 500 kHz can be processed by the ADC. If for example, two additional resolution bits are required, the 
maximum input frequency is 500 kHz/16 = 31.25 kHz when the oversampling uses white noise.

3.1.3 When is this method efficient?
For the oversampling and decimating method to work properly, the following requirements must be satisfied:
• There should be some noise in the input signal. This noise must approximate the white noise with a 

uniform power spectral density over the frequency band of interest.
• The noise amplitude must be sufficient to toggle the input signal randomly from sample to sample by an 

amount of at least 1 LSB. Otherwise, the input samples would have the same representation, and the sum 
and average operations would not give any extra resolution. For most applications, the internal ADC 
thermal noise and the input signal noise are sufficient to use this method. If the thermal noise does not 
have a high-enough amplitude to toggle the input signal randomly, then a dithering operation must be 
applied (see part 2.4). Regarding this point, two questions can be raised. The first is How to evaluate the 
ADC noise and test its Gaussian criteria? and How to generate white noise if needed?.

A practical way of detecting the Gaussian criteria of the input signal noise is to see the distribution of a clean DC 
signal over the ADC codes. The histogram method can be used to verify if the input noise follows a Gaussian 
distribution. The example in Figure 5 shows two possible situations.
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两种软件过采样实现方法。每种都有优缺点，加以对比。
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2.3节中，输入信号进行采样率OSR大于奈奎斯特频率1倍的过采样，并对信号频率进行低通滤波后得到的信噪比：
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结果表明，采样频率每增加一倍，带内噪声降低3dB，测量分辨率提高
0.5bit，因此需要6dB信噪比增益来为ADC增加1个分辨率有效位，一般
来说，如果应用程序需要额外的p位，则ADC采样频率至少为：
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抽取
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噪声要近似于白噪声，在要作
用的频带上具有均匀地功率谱
密度。
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噪声幅度必须足以使输入信号以至少1LSB的量从一个样本切换到另一个样本，否则，输入样本将具有相同的表示，并且求和平均操作不会提供任何额
外的分辨率。

对于大多数应用内部ADC热噪声和输入信号噪声足以使用这种方法。如果热噪声没有足够高的幅度来随机切换输入信号，则必须应用抖动操作。关于这一点会有两个问题。如何评估ADC噪声并测试其高斯准则？如果需要，如何产生白噪声？

检测输入信号噪声的高斯准则的一种方法是看到一个干净的直流信号的ADC编码。直方图法可以用来验证输入噪声是否服从高斯分布。如图5。



Figure 5. Histogram analysis
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In the case where an external noise dither must be added to the input signal, the thermal noise generated by a 
diode or a resistor can be injected into the input signal.
The input noise must not correlate with the useful input signal, and the input signal should have an equal 
probability of being between two adjacent ADC codes. This means that this method does not work for systems 
using a feedback process.

3.1.4 Implementation method on STM32F1, STM32F3, and STM32Lx series devices
This method describes the different steps undertaken to implement and test the oversampling method on the 
STM32F1 series, STM32F3 series and STM32Lx series devices.
According to the previous section, to make this solution work properly, there must be some white noise to make 
the input signal toggle randomly by 1/2 LSB. For this, the application environment noise must be considered.
The first step consists in computing the ADC thermal noise to conclude if external white noise must be injected 
into the input signal. In a typical application board, the computed noise does not include only the ADC internal 
noise but also the possible noise generated by the different board components and the layout. Therefore, this 
evaluation depends on the application board but the methodology remains the same.
The histogram method is used for different DC input voltages. This input voltage is sampled a large number of 
times (example 5000). The related distribution can be easily interpreted using a spreadsheet.
For example, for a 1.65 V dc input voltage applied on the STM3210B-EVAL evaluation board, the histogram 
shown in Figure 6 is detected.
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Figure 6. Histogram analysis for DC = 1.65 V

The ADC thermal noise can be computed from this histogram (although this can be shown, it is not the objective 
of this application note and the details are not offered here).
To carry on this ADC noise test, the user must do the following:
• Uncomment the line #define Themal_Noise_Measure in the oversampling.h file.
• Configure the Total_Samples_Number which is the number of ADC conversion operations. It must be 

smaller than 65535. The DMA channel is configured to store the number of ADC samples in a RAM buffer. 
At the end of the transfer, an interrupt is generated and the number of occurrences of each ADC code is 
computed.

• To compute the occurrence of the ADC codes, a variable giving the relevant ADC codes is defined.
When the code is run, Relevant_ADC_Samples ADC samples and their corresponding number of occurrences 
are displayed on the HyperTerminal. The HyperTerminal configuration is 8-bit data, no parity, 115 200 baud rate. If 
the effective number of ADC samples found is smaller than the defined Relevant_ADC_Samples variable, then 
0 is displayed for both ADC code and ADC code occurrences. The user can capture them and build a histogram.

3.1.4.1 Embedded-software flowchart for oversampling using white noise
The STM32F1 series, STM32F3 series and STM32Lx series on-chip ADC conversion frequency is fixed to 1 MHz. 
The ADC DMA channel is configured to transfer the number of oversampled inputs from the ADC data register to 
a buffer in RAM. This transfer is configured to occur one time. At the end of the DMA transfer, an interrupt is 
triggered and the oversampled result is computed.
The general-purpose timer TIM2 is used to generate the input signal sampling frequency. For this, the TIM2 
reference clock is configured at 1 μs. Its period determines the input signal sampling period. It is defined in the 
oversampling.h file as #define Input_Signal_Sampling_Period. When the TIM2 update interrupt is 
triggered, the DMA is reenabled and the converted ADC values can be treated.
Figure 7 summarizes the implemented functionality.
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Figure 7. Oversampling using a white noise flowchart
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The oversampled datum is computed in the DMA transfer complete interrupt. For synchronization reasons, it is 
recommended to read it in the second TIM2 interrupt. Note that with this implementation, the TIM2 period must be 
greater than the time required by the ADC to convert OSR samples, and greater than the ADC interrupt execution 
time.
If the sampling frequency required by the application is exactly OSR μs, then the user is not required to use the 
timer TIM2 to generate the input sampling frequency. However, the DMA must be configured to be functional in 
continuous mode and the DMA transfer complete interrupt must be updated accordingly. The oversampled datum 
is usually computed in the DMA transfer complete interrupt.

3.1.4.2 Oversampling using white noise - result evaluation
To evaluate the oversampling method, the user must uncomment the #define Oversampling_Test line and 
configure the number of samples with an enhanced resolution.
When this line is uncommented, a buffer is created in the RAM to store the oversampled data. The buffer contents 
are then displayed on the HyperTerminal. The HyperTerminal configuration must be 8-bit data, no parity, and 115 
200 baud rate. The user can capture them into a .txt file and then compare the expected results to the real ones.
To evaluate the new enhanced ADC, a ramp with a 50 Hz frequency and a 1 V amplitude is input to the ADC and 
sampled using the oversampling algorithm every 100 μs.
The embedded software example related to this method is located in the WhiteNoiseMethod folder.
The oversampling algorithm using white noise is run with the same ramp (50 Hz frequency and 1 V amplitude). 
Both Figure 8 and Figure 9 give the ADC oversampled data as a function of time in μs. Figure 8 is the result of 
adding one bit while Figure 9 is the result of adding two additional bits to the ADC on-chip resolution.
When the ramp is sampled without using any extra software resolution, with a 3.3 V reference supply, 1 V 
corresponds to the digital value 1250.
When one additional bit is added, 1 V is sampled as 2500 and when two additional bits are added, 1 V is sampled 
as 5000.
This means that the environment contains enough noise for this method to work.
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Figure 8. Ramp samples with 1 additional bit
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Figure 9. Ramp samples with 2 additional bits
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3.2 Oversampling using triangular dither
Assuming that the input signal is between two successive quantization steps q0 and q1 during the oversampling 
period, then the converter may convert it either to q0 or q1. Adding extra p bits of resolution means determining 
the relative position of the input signal between q0 and q1.
With the addition of an appropriate triangular signal, the quantizer generates a series of q1s and q0s. Averaging 
the q1 occurrences over a given interval determines the relative position of the input signal between the lower and 
the higher quantization steps.
The theory states that the best results are achieved when dithering the input signal using a triangular waveform 
with a period of OSR times the ADC sampling period and an amplitude of n + 0.5 LSB where n = 0,1,2,3.
The theory behind this method is quite complicated, so this Figure 10 is an example to illustrate how this method 
works. In this example, the ADC on-chip resolution is 3 and 3 extra bits are added by embedded software. The 
input signal is assumed to have an amplitude of q0+ 0.6LSB (q0 = 6 in this example). To add three additional bits, 
the input signal is sampled 2.23 times (16 times).

Figure 10. How to perform oversampling by adding a triangular signal

q0

q1
Input signal @ q0+0.6LSB

Input signal + triangular
waveform samples q1

(q1+q0)/2 

(q1+q0)/4
(q1+q0)/8

Average of q1 occurrences= 9/16 = 0.563

Result =(7x110 000+ 9x111 000 + 1) >>1=110 101

110 000
110 001

110 010
110 011

110 100
110 101

110 110
110 111

111 000
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Input signal + triangular
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If the input signal is not correlated with the triangular waveform, then it is demonstrated that the gain in the SNR is 
equal to: SNRGain = 20 log OSR2 (9)

Therefore, each doubling of the sampling frequency improves the SNR by 6 dB and adds 1 bit of ADC resolution.
In general, to add p-bit extra resolution, the oversampling frequency must be equal to:FOVS = 2 ⋅ 2pFs (10)

3.2.1 When does this method work?
In order to make this method work, the input signal must not vary by more than ± 0.5 LSB during the 
oversampling period and must not correlate with the triangular dither signal.

3.2.2 Implementation method on STM32F1, STM32F3, and STM32Lx Series devices
In order to implement the second solution, the following is needed:
• An operational amplifier to perform the sum of the input signal and the triangular waveform. For this, an op-

amp inverter/summing stage is required. An STMicroelectronics LMV321 can be used.
• A triangular waveform with a period of OSR times the ADC conversion rate. The user can either use a 

signal generator or one of the on-chip timers and an RC network to generate this triangular signal. Indeed, 
the on-chip timer generates a PWM signal with a duty cycle varying from 0 to 100%. This PWM output can 
be filtered with an RC filter to generate a triangular signal varying from 0 to VDD. In order to generate an 
amplitude of 0.5 LSB, then the output is first passed through a capacitor (to cut the DC component) and 
then divided by the prescaler R2/R3 (see Figure 11. Hardware requirements of oversampling by adding a 
triangular signal). This prescaler is equal to the ADC number of words.
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• The input signal must not be changed after the op-amp. For this reason, R1 should be equal to R3.
• The sum of the input signal and the triangular dither is inverted. For this purpose, a 3.3 V offset is required 

on the positive entry of the op-amp. After the oversampled data are computed, this offset is subtracted to 
give the input signal estimation with an extra resolution.

Figure 11. Hardware requirements of oversampling by adding a triangular signal
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3.2.2.1 Embedded-software flowchart for oversampling using triangular dither
The STM32F1 series, STM32F3 series and STM32Lx series on-chip ADC conversion frequency is fixed at 1 MHz. 
The ADC DMA channel is configured to transfer the number of oversampled inputs from the ADC data register to 
a buffer in RAM. This transfer is configured to occur one time. At the end of the DMA transfer, an interrupt is 
triggered and the oversampled result is computed.
The general-purpose timer TIM2 is used to generate the input signal sampling frequency. For this, the TIM2 
reference clock base is configured at 1 μs. Its period determines the input signal sampling period. It is defined in 
the oversampling.h file by #define Input_Signal_Sampling_Period.
The triangular dither is generated using the timer TIM3 configured in PWM mode by updating the Capture 
Compare Register CCR1. The timer TIM3 period must be equal to the ADC conversion rate and CCR1 must be 
updated OSR times where OSR is the oversampling factor. To do this, the possible CCR1 values are first 
computed and stored into a RAM buffer, then the DMA transfer is used to update the CCR1 register, removing the 
need for interrupts.
Note that the ADC conversion rate limits the oversampling factor. For example, in the case where the ADC is 
running at 1 MHz, the STM32F1 series is operating at 56 MHz. To have a period of 1 μs, the autoreload register of 
the timer TIM3 must be equal to 55. The maximum number of additional bits is then 4.
When a TIM2 update interrupt is triggered, the ADC and TIM3 DMA are reenabled and the converted ADC values 
can be treated to compute the new sample with the extra resolution bits. Figure 12 summarizes the 
implementation.
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Figure 12. Oversampling using triangular dither flowchart
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For this method to work, the input signal must not vary by more than ±0.5LSB during the oversampling period. 
This means that for STM32F1 series, STM32F3 series or STM32Lx series devices operating from a 3.3 V VREF+, 
the maximum allowed variations of the input signal during the oversampling period is ~0.4 mV.
On the other side, a triangular waveform with an amplitude of 0.5 LSB means a 0.4 mV amplitude when operating 
the STM32F1 series, STM32F3 series or STM32Lx series from a 3.3 V VREF+. The application environment must 
therefore not be very noisy. Any disturbance of the triangular waveform has an impact on the computed 
oversampled data.
According to the implementation, the triangular waveform is generated by means of the STM32 timer and an RC 
filter that cuts the 1 MHz timer frequency. The timer PWM output signal is integrated to provide a triangular signal 
with a 3.3 V amplitude. The division is done with the ratio R3/R2.
The embedded software related to this method is located in the TriangularDitherMethod directory.

3.3 Comparison of software oversampling methods
The first method based on oversampling and averaging using white noise provides a half-bit additional resolution 
for each doubling of the oversampling rate. The maximum input frequency is drastically decreased with the 
additional number of additional bits.
For applications where this gain is sufficient, it is a good choice. It requires the presence of white noise in the 
input signal to make the signal toggle between two adjacent ADC codes. In general, the ADC thermal noise is 
sufficient and there is no need to add external hardware to act as an external white noise source. This makes the 
solution more cost effective.
The second method based on dithering the input signal using a triangular waveform and computing its relative 
position between two quantized steps provides one more bit for each doubling of the oversampling rate. This is 
twice the improvement given by the first method. To make this method work, the input signal must not correlate 
with the triangular signal and must not have a variation greater than 0.5 LSB during the oversampling period. 
However, external hardware is needed to add the input signal and the triangular waveform.
Table 2 summarizes the main differences between the two methods. It is not possible to say that one method is 
better than the other. Each method has its advantages and limitations. The user must select the one that better 
meets their application requirements (sampling frequency, number of effective bits, and so on).

Table 2. Oversampling using white noise versus oversampling using triangular dither

Implementation conditions Oversampling using white noise Oversampling using triangular dither

Oversampling factor to add p bits to the 
ADC on-chip resolution 4p 2.2p

Maximum input signal frequency fADC max /(2.4p) fADCmax/(2.2.(2p))

Dither signal White noise with an amplitude of at least 
1 LSB

Triangular signal with an amplitude of 
n+0.5LSB
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Implementation conditions Oversampling using white noise Oversampling using triangular dither

External hardware External white noise source needed if 
the input signal noise is not sufficient.

Triangular waveform generator: an on-
chip timer can be used. In this case, an 
RC network is used to filter the PWM 
frequency.

An op-amp is needed to add the 
triangular waveform and the input signal.

3.4 Hints for software oversampling

3.4.1 What is the maximum number of bits that can be added to the on-chip ADC resolution?
It can be easily shown that increasing the on-chip ADC resolution decreases the maximum frequency component 
of the input signal.
For example, when using the STM32F1 series, STM32F3 series or STM32Lx series ADC at 1 MHz and two 
additional bits are required by the application, then the maximum input frequency is divided by:
• 16 when using the white noise method (62.5 kHz)
• 4 when using the triangular dither method (125 kHz).
For the two methods, the estimation of the input signal is done during an oversampling period of OSR times the 
ADC conversion rate. In the case the ADC is running at 1 MHz, the input signal estimation is done over OSR μs. 
The signal must not vary by more than 1/2LSB for the white noise method and, by ±0.5LSB for the triangular 
waveform method.
• When using the white noise method, the maximum number of bits that can be added to the ADC resolution 

depends only on the input signal.
• When using the triangular dither method, the maximum number of bits that can be added to the ADC 

resolution does not depend only on the input signal. In fact, the steps defining the triangular signal depend 
on the ADC and APB frequencies. The timer period should be equal to the ADC rate:

– 2x(2p) ≤ timer period
– P ≤ log2 (timer period / 2)

In our example, running the ADC with a rate of 1 μs causes the STM32F1 series to operate at 56 MHz, which 
means that the timer period must be equal to 55. The maximum number of bits that can be added in this case is 
4.

3.4.2 Taking advantage of the STM32 DAC implementation
Some STM32F1 series, STM32F3 series and STM32Lx series devices come with a DAC (digital-to-analog 
converter) that can be used in the oversampling method to avoid the use of external components.
The DAC can be used in the two oversampling methods as follows:
• In the first method, the DAC can be used to generate a white-noise waveform with programmable 

amplitude that can be injected into the input signal if noise is not sufficient. The waveform is generated 
thanks to the implemented pseudorandom algorithm. For more details, refer to the STM32F1 series, 
STM32F3 series and STM32Lx series reference manuals.

• In the second method, the DAC can be used to generate the triangular waveform. This removes the need 
for any additional external RC circuitry to filter the timer PWM frequency.

Note: This is not implemented in the software described in this application note.

3.4.3 Taking advantage of the STM32F1 series, STM32F3 series and STM32L4 series dual ADC mode 
implementation
In some STM32F1 series, STM32F3 series and STM32L4 series devices, the dual ADC mode is an interesting 
feature that allows two ADCs to convert at the same time. Using the dual ADC fast interleave mode, the same 
channel is converted alternately by ADC2 and ADC1. The time separating two successive samples is 7 ADC 
clock cycles. The input signal is therefore oversampled faster. In the example described in this application note, a 
sample is obtained every 1 μs. Using the dual ADC fast interleave mode, it is possible to have a sample every 7 
ADC clock cycles that is every 0.5 μs when running the ADC at 14 MHz.

Note: This hint is not implemented in the software given within the application note.
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3.4.4 Taking advantage of the hardware ADC oversampling implementation
On some STM32 devices, the ADC implements the oversampling feature in hardware. This feature is presented in 
Section 4  Hardware oversampling, and a comparison between hardware and software oversampling in 
Section 5  Hardware versus software oversampling comparison.
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4 Hardware oversampling

This part presents the hardware oversampling unit available in the products listed in Table 1. Applicable products.
The main benefit that the user can get from the hardware oversampling is increased SNR (signal-to-noise ratio) 
with less CPU interaction, resulting in overall lower power consumption compared with the software-based 
implementation.

4.1 Hardware oversampling feature overview
Note: This section concerns the STM32L4 series and information could slightly differ for other products. The dedicated 

documentation should be consulted.
The hardware oversampling engine accumulates the results of ADC conversions. The accumulated output data 
can be right-shifted (and rounded) to provide selected bit-depth in relation to OSR. The output value is not 
updated every sampling period, but once N samples are accumulated, therefore, the output data rate is 
decimated by a factor of OSR.
The result is the average of accumulated samples as follows:

Result = 1M × 0
N − 1Conversion tn (11)

Where both N and M can be adjusted:
• N is the oversampling ratio. It is set with the OVFS[2:0] bits in the ADC_CFGR2 register. It can be a factor 

between 2x and 256x.
• M is the division coefficient (right bit shift). It is set with the OVSS[3:0] bits in the ADC_CFGR2 register. It 

can allow to right shift the sum up to 8 bits.
In the case of STM32L4 series, the oversampling engine begins summing N samples. The sum is then right 
shifted by M bits. The engine keeps the 16 least significant bits after the shift, and rounds the result to the nearest 
value according to the bits removed by the shifting.
The final result is saved in the ADC_DR data register and because of the 16-bit truncation, it cannot be 
represented on more than 16 bits.
How to operate the bit-depth obtained with oversampling
When N samples of X bits are accumulated, the result can be coded on up to X + (ln(N) / ln(2)) bits.
For example, if the oversampling ratio N is 256x and the samples accumulated are on 12 bits, the sum of N terms 
will be on 20 bits since ln(256) / ln(2) = 8 and 12 + 8 = 20.
Next, the right shifting, which is up to 8 bits has to be taken into account.
Finally, the bit-depth is given by X + (ln(N) / ln(2)) – M but is limited to 16 bits because of the truncation.

Note: The number of bits X for a sample depends on the product used and can be found in its datasheet.
The Accumulate and average stage can be thought of as a kind of digital filter (often called accumulate-and-
dump). The frequency response of such filter is equivalent to a first order Cascaded-integrator-comb (CIC1) 
Hogenauer filter. The frequency response in case of sampling frequency 1 MHz and OSR = 10 can be seen in 
Figure 13. Frequency response of accumulate-and-dump filter.
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Figure 13. Frequency response of accumulate-and-dump filter
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Although this is not a perfect low-pass filter, the very high attenuation of the sampling frequency is a useful 
property. It is effective in canceling the out-of-band noise resulting in an increased signal-to-noise ratio.
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5 Hardware versus software oversampling comparison

The ADC oversampling method can be implemented by hardware or by developing a dedicated software routine.
The advantage of hardware implementation is that the total energy budget needed for processing the ADC 
acquired samples is reduced in comparison to the software implementation where all the data processing needs 
to be done by the core. However, the hardware oversampling unit is not available on every product.
Two test projects emulating the common data acquisition tasks have been developed and executed on the same 
system to evaluate the energy difference and to demonstrate how much energy can be saved by using the 
hardware oversampling.

5.1 Software implementation
The project demonstrating the software oversampling implementation method consists of the following steps, 
which are repeated every 100 ms:
1. Configuring the system/data acquisition.
2. Capturing of 64 samples by ADC and storing them in the memory by using DMA while the core is in Sleep 

low-power mode.
3. Processing the data acquired by the CPU to get an oversampled value.
4. Putting the system in Stop mode for the rest of the 100 ms interval.

5.2 Hardware implementation
The project showing the hardware implementation carries out the same task, except that the data processing is 
done by the ADC oversampling engine. Hence, the CPU can be inactive during the acquisition and oversampling:
1. Configuring the system/data acquisition.
2. Capturing of 64 samples and processing them by the ADC oversampling engine while the core is in Sleep 

low-power mode.
3. Putting the system in Stop mode for the rest of the 100 ms interval.

5.3 Results
The energy consumption for the data acquisition and processing task, and the average current consumption for 
the whole 100 ms period for both demonstration projects are detailed in Table 3.

Table 3. Comparison of SW and HW implementation of ADC oversampling technique

Implementation Data acquisition and 
processing time Acquisition task charge Average current 

(during 100 ms)

Hardware 6.06 ms 896 pAh 3.23 μC 37 μA

Software 6.80 ms 1099 pAh 3.96 μC 44 μA

The hardware oversampling implementation can save about 20% of the energy consumed to complete the 
acquisition and data processing task with lower coding effort and CPU time.
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6 ENOB (effective number of bits) measurement

The formulas to apply for a desired resolution improvement using each method are presented in the table Table 4.

Table 4. Formulas for ENOB improvement

Method
Formula

(X is the ADC resolution OSR is the oversampling ratio)

Hardware oversampling
Resolution = X + (ln (OSR) / ln(2)) – M

M is the division coefficient of the hardware oversampling engine

Software oversampling with white noise Resolution = X + p with OSR = 4p

Software oversampling with dithering Resolution = X + p with OSR = 2*2p

In practice, this resolution never reaches its theoretical value. A good indication of the efficiency of an ADC is to 
determine its ENOB (efficient number of bits). This parameter can be considered as a 'real-life' resolution that 
takes into account potential noise, distortion, and circuit imperfections. It also gives a good indication of its 
dynamic performance.
It is good practice to measure this parameter to verify that the resolution of an ADC is not degraded too much by 
its implementation and configuration.
The ENOB can be determined by several methods. In the context of this document, a formula that links it to two 
other parameters is used: SINAD (signal-to-noise and distortion ratio) and THD+N (total harmonic distortion + 
noise).
The formulas are as follows:ENOB = SINAD − 1.76 + 20log Full_scale_amp/Input_amp /6.02 (12)ENOB = THD + N − 1.76 + 20log 10 Full_scale_amp − Input_amp /6.02 (13)

Full_scale_amp is the maximum amplitude that can be measured by the ADC.
Input_amp is the amplitude of the signal applied to the ADC.
These formulas result directly from equation (5). The difference is that noise and distortions are taken into 
account by replacing the SNR by the SINAD or the THD+N, making it closer to a real-life situation. The amplitude 
of the input signal used for ENOB measurement is also taken into account thanks to the ratio Full-scale amp./
Input amp. Indeed, if the amplitude of the input signal does not fill the full amplitude reading ability of the ADC, 
this has to be considered when computing a ratio featuring the level of this signal.

Note: If the bandwidth of the measurement is DC to Fs/2 (the Nyquist bandwidth, Fs is the sampling frequency), THD 
+ N is equal to SINAD. That is what we consider for the two formulas above.
The following steps can be followed to measure the ENOB of an ADC:
• With a high precision signal generator, inject a sinusoid on one of the tested ADC channels with a 

frequency respecting the maximums given in Table 2. Oversampling using white noise versus oversampling 
using triangular dither for software oversampling, or fADCmax/(2*N) for hardware oversampling with N 
being the oversampling ratio of the oversampling engine. The sinusoid amplitude should be 90% of the 
ADC full-scale to avoid saturation.

• Configure the ADC to acquire some samples of the signal. The best is to get a rounded number of the 
signal period. 4096 is a good example but might need to be adjusted in function of the frequency of the 
input signal.

• Make the successive binary codes operated by the ADC available for measurement (parallel/serial 
transmission, file recording…).

• Analyze the ADC measured signal with a frequency analyzer capable to do SINAD or THD+N 
measurement.

• With the SINAD or THD+N measurement features, get the value for one of these two parameters. 
Measuring both parameters enable doing a comparison of the ENOB values obtained.

• Apply the formula to determine the ENOB of the ADC (see Eq. (12) or Eq. (13)).
To provide practical data and be able to analyze the effect of oversampling on the ENOB, the above steps have 
been followed with the following equipment and tools.
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The input sinusoid has been generated with the analog output of the Audio Precision AP2722 Audio Analyzer. 
Several input frequencies have been tested to analyze the effect on the ENOB obtained. The signal output by the 
AP2722 is 0-centered, so a conversion stage is needed to set its amplitude between 0 and 3.0 V 
(VDD=VDDA=3.3 V on STMicroelectronics EVAL and Nucleo boards).

Note: This conversion stage behaves like an HP filter and influences the signal measured by the ADC (lower signal 
resolution for lower frequencies). This can give a good representation of a real-life use case.
The STM32L476G-EVAL board has been used to process the ADC measurement and transmitting/recording it. 
The ADC sampling is done on the pin PA4 linked to the STM32L4 ADC1 Channel 9 and to ground through a 
4.7nF capacitor to filter high frequency noise. This pin is available on the connector CN7 of the EVAL board.
The application running on the STM32L476G-EVAL board saves 4096 ADC samples in RAM thanks to the DMA 
peripheral.
The oversampling unit is used to analyze its effect and configured as presented in table 6.
A timer is set up to trigger the transfer of each sample (even the ones used for oversampling). The frequency of 
this timer is adjusted according to the oversampling configuration wanted.
When the 4096 samples are saved, they are transferred through the STM32 UART interface to be recovered in a 
file on a PC thanks to a Python script.
The resulting file is formatted so that it can be processed with MATLAB®.
The sampling rate chosen for the test is 12.5 kHz (when oversampling is used, this is the final sampling rate) to 
be able to keep a constant ADC clock frequency (80 MHz) and sampling time (12.5 cycles).

MATLAB® enables computing the SINAD or THD+N of the ADC signal. It has a native sinad function that is used 
to analyze the ADC signal saved into the file created previously. Then, applying eq.X gives us the ENOB 
measured.

To emphasize oversampling effects, each oversampling ratio possible has been tested while fixing the right shift 
coefficient to target the best resolution offered.
Table 5 presents the resolution that can be achieved in function of the oversampling ratio and the right shifting. 16 
bits have been targeted. For the ratio values 2, 4 and 8 a left shifting (respectively by 3, 2 and 1 bit) has been 
processed to achieve the 16-bite target.

Table 5. Theoretical ENOB values for hardware oversampling unit versus configuration

OSR\M
Hardware oversampling unit coefficient (M)(1)

0 1 2 3 4 5 6 7 8

2 13 12 11 10 9 8 7 6 5

4 14 13 12 11 10 9 8 7 6

8 15 14 13 12 11 10 9 8 7

16 16 15 14 13 12 11 10 9 8

32 17 16 15 14 13 12 11 10 9

64 18 17 16 15 14 13 12 11 10

128 19 18 17 16 15 14 13 12 11

256 20 19 18 17 16 15 14 13 12
 

1. Bold entries have no significance since the hardware oversampling unit output is limited to 16-bit data width.
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Table 6. Practical ENOB measurement with the hardware oversampling unit versus configuration

OSR
Hardware oversampling unit coefficient (M)(1)

0 1 2 3 4 5 6 7 8

2 13 12 11 10 9 8 7 6 5

4 14 13 12 11 10 9 8 7 6

8 15 14 13 12 11 10 9 8 7

16 16 15 14 13 12 11 10 9 8

32 - 16 15 14 13 12 11 10 9

64 - - 16 15 14 13 12 11 10

128 - - - 16 15 14 13 12 11

256 - - - - 16 15 14 13 12
 

1. Bold entries have no significance since the hardware oversampling unit output is limited to 16-bit data width.
 

Table 7. Practical ENOB measurement with the hardware oversampling unit versus configuration

OSR
Software oversampling with white noise Software oversampling with dithering

Theoretical resolution Practical ENOB Theoretical resolution Practical ENOB

2 - - 12 -

4 13 - 13 -

8 - - 14 -

16 14 - 15 -

32 - - 16 -

64 15 - 17 -

128 - - 18 -

256 16 - 19 -

As mentioned before, the signal test input is a 3.0Vpp sinusoid and the sampling rate is 12.5 kHz. Thus, to 
respect the Nyquist criteria, the following frequencies have been tested: 500 Hz, 1 kHz, 1.5 kHz, 2 kHz, 2.5 kHz.

Table 8. Effect of oversampling on ENOB

OVS ration OVS right shift OVS left shift
ENOB

500 Hz 1 kHz 1.5 kHz 2 kHz 2.5 kHz

None None None 10.4126 10.3622 10.3543 10.2774 10.3084

2 None 3 10.6245 10.6302 10.9172 10.8618 10.9524

4 None 2 10.9567 11.2234 11.2249 11.3322 11.3531

8 None 1 11.1692 11.3454 11.4646 11.5817 11.7653

16 None None 11.2158 11.4962 11.6551 11.8414 11.9138

32 1 None 11.2718 11.6126 11.8103 12.0408 12.2725

64 2 None 11.3109 11.6220 11.8968 12.1124 12.3626

128 3 None 11.3259 11.6568 11.9050 12.1579 12.6038

256 4 None 11.3582 11.7032 11.9301 12.2419 12.8259
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Note: For reference, after the conversion stage and at the ADC pin level, the following THD+N values were measured: 
-82.5 dB at 500 Hz (this is equivalent to 13.55 ENOB according to eq. Y), -93 dB at 1 kHz (15.29 ENOB), -96 dB 
at 1.5 kHz (15.79 ENOB), -97 dB at 2 kHz (15.96 ENOB) and -98 dB at 2.5 kHz (16.12 ENOB). At the audio 
precision analyzer output, which is before the conversion stage, -105 dB were measured (17.28 ENOB).
In the STM32L476 datasheet, it is given that the typical ENOB of the ADC is 10.5 (the ADC is configured as 
single-ended).
Thus, Table 8 shows that it is possible to get over this typical value and even over the real ADC resolution. 
However, the theoretical 16-bit target stays far from the results and corresponds more to an idea of the 
performance of the oversampling configuration.
The result also highlights that a higher oversampling ratio gives a better ENOB despite limiting the sampling 
frequency and so the input signal frequency.
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7 Conclusion

This application note has explained the basics of the oversampling technique used to improve the SNR 
performances (and thus the effective resolution) of ADCs integrated in most of the STM32 microcontrollers.
The cornerstones of the oversampling technique are:
• The RMS quantization noise of an ADC is q / √(12), over the Nyquist bandwidth (q is the ADC quantum: 

LSB value)
• If the wanted bandwidth is smaller than the Nyquist bandwidth, the quantization noise is reduced in 

proportion by using a filter to remove the out of band noise
• Dithering can be used if the quantization noise does not behave like a wideband noise
The hardware implementation of the ADC oversampling technique reduces the time and energy needed by the 
CPU for the data processing tasks. It results in lowering the overall power consumption.
When the hardware oversampling unit is not available on the STM32 used, it is still possible to implement entirely 
the technique via software as it has been presented in this document.
The effect of oversampling on the effective ADC resolution (ENOB) has also been analyzed. With oversampling it 
is possible to get the effective resolution over the real one.
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